Synchondrous thyroid papillary and medullary carcinoma in a pregnant patient

Gebe hastada senkron tiroid papiller ve medüller karsinomu

Bartu Badak¹, Mustafa Salış¹, Enver İhtiyar¹, İsmihan Gülden Karataş¹, Zeynep Özgül², Hülya Aslan³

¹Eskisehir Osmangazi University General Surgery Department

Abstract

Mixed thyroid carcinoma is a term to describe the carcinomas composed of papillary-medullary or follicular-medullary carcinomas and these carcinomas arise from the same thyroid gland and display morphological and immunophenotypical features of both origins within the same lesion. A few cases has been reported in the literature and recently there are some molecular studies searching the developmental mechanisms of these tumors.

Here in, we aimed to present a pregnant case with synchronous medullary and papillary thyroid carcinoma.

In the present case, the most remarkable features of this case was the patient's being pregnant at the time of the diagnosis and the presence of metastatic lymph node on the side of papillary tumor originating from the contralateral medullary carcinoma. The patient went to bilateral total thyroidectomy, central neck dissection of left side and right sided modified radical neck dissection.

Key words: Thyroid , medullary carcinoma, papillary carcinoma, mixed carcinoma

Özet

Tiroid bezinin mikst tip olarak adlandırılan karsinomları, papiller-medüller, foliküler- medüller olmak üzere aynı tiroid bezinde her iki tümörün immünfenotipik ve morfolojik özelliklerini gösteren tümörleri ifade etmek için kullanılan bir terimdir. Literatürde az sayıda olgu bildirilmekle beraber, bu tümörlerin nasıl geliştiğiyle ilgili moleküler düzeyde çalışmalar mevcuttur.

Bu olgumuzda tiroid bezinde senkron papiller ve medüller tiroid karsinomu bulunan 6 aylık gebe hastayı sunmayı amacladık.

Hastanın gebe olması ve papiller karsinomun bulunduğu lobda medüller karsinom lenf metastazının bulunması dikkat çekici özelliğiydi. Hastaya bilateral total tiroidektomiye ek olarak sol santral boyun diseksiyonu, sağ modifiye radikal boyun diseksiyonu uygulandı.

Anahtar Kelimeler: Tiroid, medüller karsinom, papiller karsinom, mikst karsinom

Yazışma Adresi | Correspondence: Bartu Badak, Eskisehir Osmangazi University General Surgery Department Eskişehir e-posta: drbartu@gmail.com

Başvuru tarihi | Submitted on: 27.10.2018 Kabul tarihi | Accepted on: 15.01.2019

²Eskisehir Osmangazi Universty Pathology Department

³Adana Baskent University Radiology Department

Introduction

Papillary thyroid cancer is the most common subtype of thyroid carcinoma and accounts for approximately 80% of all thyroid carcinomas^{1,2}.

Papillary thyroid cancer is more common in females than in males by a 2:1 ratio in adults³.

Peak onset ages are 30-40 years.

It originates from the follicular cells of thyroid gland and radiation exposure is the most important known- risk factor.

Metastases to lymph nodes are common in childhood and young patients.

Distant metastases occurs in 20% of all cases. The most common sites of metastases are lung, bone, brain and liver⁴.

Fine needle aspiration biopsy (FNAB) is the gold standard in the diagnosis of thyroid carcinoma.

There are some characteristic diagnostic nuclear and cell features by pathologically.

Nucleus show groove pattern and include intranuclear cytoplasmic inclusions.

These inclusions are diagnostic in FNAB.

Mortality rates of papillary carcinoma are 2% in 5 years follow up, 4% in 10 years follow up and 5% in 20 years follow-up⁵.

Medullary thyroid carcinoma accounts for the 5% of all thyroid malignancies⁵.

It is a neuroendocrine tumor originating from the parafoliculary C cells of thyroid gland. It is more common in females than in males by a 1.5:1 ratio.

Nearly 20% of cases are familial (hereditary?).

The diagnosis is made by FNAB. The presence of amyloid is diagnostic by pathology, however immunohistochemistry is more commonly used for calcitonin.

These tumors are positively stained with CEA and calcitonin related peptide (CGRP).

The term of mixt type thyroid carcinoma is used to describe the synchronous carcinomas of the thyroid gland.

The coexistence of medullary, papillary and follicular carcinoma may be in the thyroid gland.

In this case report we aimed to present a case with synchronous medullary and papillary carcinomas.

Case Presentation

Thirty three years old female with a 6 months pregnancy admitted to a secondary hospital with a 6-month history of a lump in the neck. Thyroid ultrasonography revealed an isoechoic nodule within 14 mm diameter in the lower pole of the right thyroid lobe and an isoechoic nodule within 9mm diameter in the middle zone of the right thyroid lobe. Also, 16x30 mm lymphadenopathy including microcalcifications in level III was reported in the right side of the neck.

FNAB was performed to the nodule in the left lobe of the thyroid and the lymphadenopathy in the right side of the neck. The pathology report was suspicious for papillary carcinoma and insufficient for the lymphadenopathy.

Positron emission tomography using F-18 fluorodeoxyglucose (FDG) showed increased focal FDG uptake in the left lobe of the thyroid (SUV MAX: 6,78) and 22x23x35 mm enlarged lymphadenopathy in the neck (level IIB).

Surgery was suggested and patient refused it. Then patient was referred to the department of general surgery at our hospital.

She did not have an exposure of radiation.

There were not any other disease except venous insufficinecy in the history of the patient.

Physical examination revealed a 2,5 cm x 1,5 cm immobile, fixed mass in the right neck.

Thyroid lobe was enlarged (palpable). No other mass was detected at the physical examination.

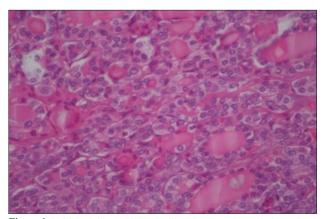


Figure 1. Left lobe Follicular Variant Papillary Carcinom; Large Nuckleus, Focal areas with frosted glass imaging (H&E, X 400)

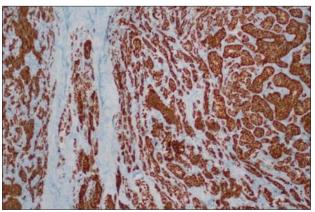


Figure 2. Left thyroid lobe, CK19 Pozitive Neoplastic Cells (IHC X 100)

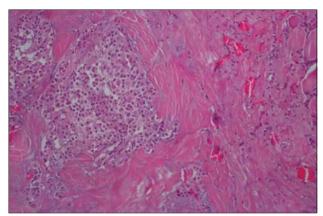


Figure 3. Right Lobe Medullary thyroid Carcinoma

Preoperative hormone levels were as follows; TSH (0,006 uIU/ml), free T_4 (1,25 ng/dl), free T_3 (3,48 pg/ml), Anti TPO:negative, calcitonin: 464 pg/mL , PTH: 168 pg/mL. The patient with pressure symptoms and severe headache was consulted with the department of endocrinology preoperatively and accepted as subclinical hyperthyroidism.

US examination of the neck showed an isoechoic solid nodule located in the left thyroid lobe (1.5 cm of largest diameter), colloid nodules smaller than 0.5 cm in the right lobe. US also revealed a 4 cm x 2,5 cm lymph node in level V of right neck.

Then patient went to bilateral total thyroidectomy, left central neck dissection and right modified radical neck dissection. The patient is alive 12 months after surgery and taking thyroid hormone replacement.

Histopathological examination reports showed a 7mm diameter medullary carcinoma in the right thyroid lobe with the intact thyroid capsule. (*Figure 3-4*) The distance between the thyroid capsule and the nodüle was 0.2 cm. Both of the nodule in the right lobe and the lymphadenopathy in level II was stained positively by calcitonin, TTF-1, CEA, Amyloid A and chromogranin. They were negatively stained by Galectin 3, CK 19, HBME-1.

The nodule in the left lobe was positively stained by CK19, Galectin 3 and HBME-1 and negatively stained by Calcitonin, chromogranin and CEA. The final decision of the tumor was follicular variant type papillary carcinoma. (*Figure 1-2*) The tumor was presented as an encapsulated nodule and included diffuse oncocytic changes. The nodule was within 2 cm diameter and extending to the subcapsular area. The thyroid capsule was intact.

The metastatic lymp node in neck was positive for TTF-1, CEA, Amyloid A, Chromogranin and negative for Galectin 3, CK19 ve HBME-1. Despite the the papillery carcinoma in the left lobe, the origin of metastatic lymph node at the same side was contralateral medullary carcinoma (*Figure 5*).

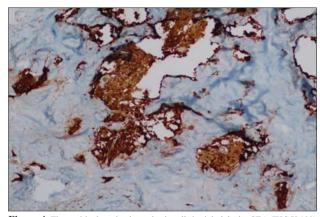


Figure 4. The positively stained neoplastic cells in right lobe by CEA (IHC X 100)

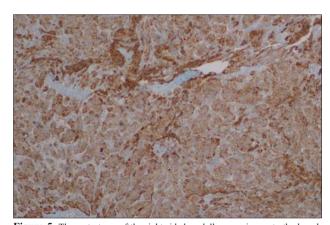
Discussion and Conclusion

Thyroid carcinomas are classified in two different histopathologic types.

Differentiated thyroid carcinomas are papillary thyroid carcinomas and follicular carcinomas.

They originate from the foregut endoderm.

They tend to metastase by lymphatic and blood circulation.


Papillary carcinomas are the most comon type with an incidence of 80% among all thyroid carcinomas⁷.

Approximately 30% of thyroid carcinomas have micro metastases at the time of the diagnosis. 29% of the cases show multifocal spread pattern⁸.

Multifocality is common in papillary carcinomas. Multifocality is related with the increased risk of lymph node metastases. These tumors rarely invade the trachea, recurrent laryngeal nerve and esophagus.

10 year survival rate is more than 95%.

This protooncogen is responsible for the tyrosine kinase receptor coding and binding of many growth factor receptors⁴.

Figure 5. The metastases of the right sided medullary carcinoma to the lymph node in the lef thyroid lobe, the tumor was positive by chromogranin. The tumors were stained more prominent than the origin of the tumor

Medullary thyroid cancer is commonly presented with palpable neck mass and lymphadenopathy⁴.

Diagnosis is made by FNAB with an accuracy rate of 50-80%. Nearly 25% of medullary thyroid cancers are hereditary and there is a pathology in RET proto oncogene.

There are three types of this disease which is named as multiple endocrine Neoplasia. Thyroid carcinoma, feochromacitomas and hyperpatahtroidism is seen in MEN IIa . In MEN IIb medullary thyroid carcinoma, pheochromocytoma and ganglioneuroma is seen.

Rarely calcification can be detected radiologically in neck.

Systemic symptoms may ocur due to the hormone secretion by tumor.

Calcitonin or calcitonin gene related peptide secretion can cause diarrhea and flushing. Corticotropin secretion may result with Cushing Syndrome.

Prognostic factors of medullary carcinoma are age, the extent of the disease (presence of metastatic lymph node or distant metastases), male sex, the diameter of the tumor, extra thyroid invasion, vascular invasion, immune reaction to calcitonin, the presence of amyloid in the tumor, post-operative residual tumor and high levels of calcitonin (5). In medullary carcinoma 5 and 10 years survival rates were 4 95% and 65% under 40 years old, more than 40 years old 75% ve 50% respectively.

The other prognostic factors are the presence of galectin in the thyroid tissue, high levels of CEA, and increase in the procalcitonin/calcitonin ratio 10.

Mixt thyroid carcinoma is a term to describe the

Mixed thyroid carcinoma is a term to describe the carcinomas composed of papillary-medullary or follicular-medullary carcinomas and these carcinomas arise from the same thyroid gland and display morphological and immunophenotypical features of both origins within the same lesion¹¹.

The presence of sencron or metachron tumor with different origins is a rare entity and nearly 50 cases have reported in the literature.

However some authors reported an incidence of 19% with the papillary microcarcinoma and medullary carcinoma¹²⁻¹⁴.

Some hypothesis were suggested to explain the presence of syncron tumors

"The theory of Stem Cell" proposes that stem cells that are not transformed by neoplastic processes have the capacity to gain the ability of obtaining thyrocyte or C cell phenotypes.

Recent studies showed that RET protooncogene has a role in the oncogenesis of the both medullary and papillary carcinomas by activation of tyrosine kinase¹⁵⁻¹⁷.

In the literature synchrone carcinomas has been reported previously. Machens et al. showed synchron thyroid papillary carcinoma among 727 thyroid medullary carcinomas. 6 of these cases were hereditary and 20 cases were

sporadic.

Machens et al reported a synchronous thyroid papillary carcinoma in 26 of 727 medullary carcinoma patients. 6 of these 26 patients were hereditary.

They did not find a correlation with the sporadic or hereditary onset of these cases and the presence of synchronous thyroid tumor.

After a family scan we confirmed that our case is a sporadic case. Average diameter of medullary carcinoma has been reported 11 mm in patients with simultaneous medullary and papillary carcinoma¹⁸.

The decision of the treatment plan was made base on the papillary carcinoma in these cases¹⁸.

In this case different types of neck dissection was performed on both sides after total thyroidectomy.

Central neck dissection was performed on left lob due to the papillary carcinoma and radical neck dissection was performed on the right side for medullary carcinoma.

In conclusion, the most remarkable features of this case was the patient's being pregnant at the time of the diagnosis and the presence of metastatic lymph node on the side of papillary tumor originating from the contralateral medullary carcinoma.

Compliance with ethical standarts

The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper."

References

- Burinicardi F Charles et al. Schwartz's principels of surgery.
 In: Lal G, Clark HO. Thyroid, parathyroid, adrenal. McGraw Hill Company, Ninth Edition, Newyork 2010:1343-1408.
- Jameson JL, De Groot JL. Endocrinology adult and pediatric.
 In: Pacini F, Marchisotta S, De Groot JL. Thyroid neoplasia.
 Saunders Elsevier, 6th edition, Philadelphia 2010:1668-1701.
- Malloy MK, Cunnane FM. Pathology and cytologic features of thyroid neoplasms. Surg Oncol Clin N Am 2008;17:57-70. http://dx.doi.org/10.1016/j.soc.2007.10.012 PMid:18177800.
- Lal G, Clark HO. Thyroid, parathyroid, adrenal. In: Burinicardi F Charles eds. Schwartz's Principles of Surgery. McGraw Hill Company, Tenth Edition, Newyork 2015:1521-1556.
- Ball WD. Medullary thyroid cancer: Monitoring and therapy. Endocrinol Metab Clin N Am 2007;36:823-837.
- Monden T, Mori M (1998) Many faces of mixed medullaryfollicular and papillary carcinoma of the thyroid. Intern Med 37:909–910.
- Schlumberger MJ. Papillary and follicular thyroid carcinoma. N Engl J Med 1998;338:297-306.
- Toniato A, Boschin I, Casara D, Mazzarotto R, Rubello D (2008) Pelizzo. Papillary thyroid carcinoma: factors influencing recurrence and survival. Ann Surg Oncol 15:1518–1522
- Jimenez C, I-Nan Hu M, Gagel FR. Management of medullary thyroid carcinoma. Endocrinol Metab clin N Am 2008;37:481-496.
- Machens A, Hauptmann S, Dralle H. Abnormal carcinoembryonic antigen levels and medullary thyroid cancer progression: a multivariate analysis. Arch Surg 2007;142:289-293.
- Nangue C, Nangue C, Bron L, Portmann L, Volante M, Ris HB, Monnier P, Andejevic-Blant S (2009) Mixed medullary-papillary

- carcinoma of the thyroid: report of a case and review of the literature. Head Neck 31:968–974.
- Biscolla RP, Ugolini C, Sculli M, Bottici V, Castagna MG, Romei C, Cosci B, Molinaro E, Faviana P, Basolo F, Miccoli P, Pacini F, Pinchera A, Elisei R (2004) Medullary and papillary tumors are frequently associated in the same thyroid gland without evidence of reciprocal influence in their biologic behaviour. Thyroid 14:946–952.
- Kim WG, Gong G, Kim EY, Kim TY, Hong SI, Kim WB, Shong YK (2010) Concurrent occurrence of medullary thyroid carcinoma and papillary thyroid carcinoma in the same thyroid should be considered as coincidental. Clin Endocrinol 72:256–263.
- Rios A, Rodriguez JM, Ferri B, Balsalobre MD, Parrilla P (2006) Association of medullary and differentiated thyroid carcinomas. Otolaryngol Head Neck Surg 135:473–475.
- Cupisti K, Raffel A, Ramp U, Wolf A, Donner A, Krausch M, Eisenberger CF, Knoefel WT (2005) Synchronous occurrence of a follicular, papillary and medullary thyroid carcinoma in a recurrent goiter. Endocr J 52:281–285.
- Volante M, Papotti M, Roth J, Saremaslani P, Speel EJM, Lloud RV, Carney AI, Heitz PU, Bussolati G, Komminoth P (1999) Mixed medullary-follicular thyroid carcinoma. Molecular evidence for a dual origin of tumor components. Am J Pathol 155:1499–1509.
- Ljungberg O, Ericsson UB, Bondeson L, Thorell J (1983) A compound follicular-parafollicular cell carcinoma of the thyroid: a new tumor entity? Cancer 52:1053–1061.
- 18. Machens A, Dralle H. Simultaneous medullary and papillary thyroid cancer: A novel entity? Ann Surg Oncol. 2012;19:37-44.